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Through recent work on the theory of stellar atmospheres h*,«, 1 2 * 4 
it has become clear that the continuous absorption in atmo­
spheres of the solar type is mainly due to the negative hydrogen 

ion, II .
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Making use of Hylleraas’5 calculation of the ionisation po­
tential of the negative hydrogen ion, and of the the estimates of 
its continuous absorption by Jen6, and by Massey and Smith7, 
Wildt showed that II probably contributed most of the con­
tinuous absorption in the case of the solar atmosphere. After 
the astrophysical importance of Il~ had been revealed by Wildt’s 
discovery, Massey and Bates8 carried out a much more accurate 
calculation of the continuous absorption coefficient of H as a 
function of the wave length. The results of this calculation were 
used by Wildt2, and by B. Strömgren3 in work on model solar 
atmospheres according to the revised concept of the mechanism 
of continuous absorption.

The continuous absorption coefficient of the negative hydrogen 
ion has hitherto been calculated only for transitions to states 
in which the neutral atom left by the electron is in the ground­
state. The fact that the integrated /’-sum for these transitions is 
considerably smaller than the theoretical value 2 indicates, how­
ever, that we have to consider other transition processes also, 
namely such which leave the atom in an excited or even ionised 
state. Transitions of this kind, having their absorption edges in 
the ultraviolet, have little influence on the value of the opacity 
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of the matter in the solar atmosphere, provided that there are 
no important deviations from the black body curve of emission 
in the far ultraviolet. But in atmospheres where the temperature 
is higher and the electron pressure is great enough to balance 
the ionisation of the negative ions due to the higher temperature, 
this absorption which is partly placed in the spectral “window” 
on the long wave length side of the Lyman continuum may have 
some influence.

The aim of the present work has been the calculation of the 
transition probabilities mentioned, to see if any of them were 
large enough to be responsible for the theoretically expected 
remainder of the total absorption.

The formulae used for the transition probabilities and the 
equations determining the eigenfunctions (Fock’s equations) have 
been taken from D. R. Hartree and W. Hartree’s work on 
calcium1. The cases are analogous, as in both cases we have 
to deal with two valence electrons.

In the final state of the transition considered we have to deal 
with one s- and one p-electron (one of them bound and the other 
free). We therefore get the following two simultaneous Fock- 
equations which correspond to Hartree’s equations for calcium 
neglecting the interaction of the valence electrons with the inner, 
closed shells (with n between 1 and 3). In Hartree’s notation 
—with indices s and p only instead of 4 s and 4 p—the two 
equations are as follows:

The negative sign of the last term in the equations is due to 
the fact that we are dealing with singlet states only, c is the 
energy of the electron with its sign reversed. It is measured in 
units of the Rydberg-constant equal to the ionisation energy of

(1)

1). R. Hartree and W. Hartree, Proc. Roy. Soc. A 164, 167, 1938.
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neutral hydrogen. (In the present work we have made no distinc­
tion between the Rydberg-constant for hydrogen and for infinite 
mass, the difference being wholly negligible in our calculations).

In the case that one of the two electrons is free the above 
equation (1) for the other electron is reduced to the simple 
ScHRÖDiNGER-equation for a neutral hydrogen atom. The equation 
for the free electron itself undergoes no similar reduction, as it 
is homogenous in the unknown eigenfunction so that all its 
terms are reduced in the same way when the state of lhe elec­
tron approaches lhe free state3 1. Instead of two simultaneous 
equations we get only one in which beside the required eigen­
function for the free electron we have the well-known hydrogen 
eigenfunction for the considered stationary state of the atom.

(3)

1 H. Bethe: Handbuch der Physik, Kap. 3, 350, 1933.
2 D. R. Hartree and W. Hartree, Proc. Roy. Soc. A 164, 167, 1938.

Between lhe two equivalent s-electrons in lhe negative ion 
there are no exchange forces in this approximation used by 
Hartree. Its two identical s-functions may therefore be deter­
mined by the ordinary self consistent field-method. These eigen­
functions are used throughout the present work because Har­
tree’s formulae for the transition probabilities can be utilised 
directly for such eigenfunctions.

For the transition probability we use Hartree’s formula 
for the transition between the two lowest states of neutral calcium, 
this transition being exactly analogous lo the transitions of the 
hydrogen ion here considered.

The formula for the transition probability A is2

2
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r is—as in the equations — measured in atomic units. The in­
dices A and B refer to the ion-state and the stale with one 
s- and one /»-electron respectively, r is the wave-num her of the 
absorbed radiation and R the Rydberg-constant. The number 3 
in the denominator in the formula for A is the statistical weight 
of the upper state, this being a singlet P-state.

Between A and the oscillator-strength of absorption /' we 
have Ladenburg’s relation:

(4)
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Here g' and g denote the statistical weights of the upper and 
the lower state respectively.

In our case, when we have to
T • <//’ 1

states, we are interested in the
dE

val of energy. The eigenfunctions
then be normalised in such a way that their limiting amplitudes 

1

are n 5

<//■= 1
dE 3

where the eigenfunction of the free electron (being an s- or an 
p-electron if the atom is in a P- or a S-state respectively) is 
normalised in the way described above.

The energy of the absorbed radiation is the sum of the 
ionisation energy of the ion, the exitalion energy of the atom
and the energy of the free electron.

The absorption coefficient zr is 8.06- 10~18 -^.2 The transi- 
d/s

tion probabilities for the transitions to the ground state of the 
atom calculated in the way here described may be less accurate 
than the corresponding probabilities as calculated by Massey 
and Bates3 because the latter authors used Hylleraas’ better

1 J. Hargreaves, Proc. Cambridge Phil. Soc. 15, 75, 1929.
2 A. Unsold: Physik der Sternatmosphären (35,1), 1938.
3 H. S. W. Massey and I). R. Bates, Ap. J. 91, 202, 1940. 
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approximation for the ion-eigenfunction. The degree of agreement 
between the two sets of results may, however, serve as an in­
dication of the accuracy of those of our results, which cannot 
he compared with earlier calculations, in so far as the in­
accuracy is due to the uncertainly of the ion-eigenfunction.

The eigenfunction for the negative hydrogen-ion was found 
by successive approximations, the /^-function used for an ap­
proximation being calculated by means of the preceding ap­
proximation. As a rule an eigenfunction intermediate between 
the two last approximations was used for the calculation of the 
new field function, and a corresponding average field function 
was used for the calculation of a new eigenfunction. In this 
way the oscillations in the functions from one approximation 
to the next were considerably damped. The eigenfunction as 
integrated from the origin was joined with an exponential func­
tion outside the range of the Coulomb field. The difference be­
tween the energy parameters in the inner and the outer part 
of the function was a measure of the error in the approxim­
ation. A new field function was not calculated until an energy 
parameter had been found, which made the eigenfunction satisfy 
the two boundary conditions simultaneously. The energy para­
meter—not to be confused with the ionisation potential of the 
ion—was in the final approximation found to be 0.093 Ryd­
berg units.

The normalised eigenfunction P for one electron in the ion 
found in the way here described is given in Table I together with 
r • P and the corresponding 2Z = 2 — 2 F(). The last figure given 
has in most cases an uncertainly amounting to one or two units.

The eigenfunctions of the free electrons were calculated by 
means of successive approximations, the first being the solution 
of the equations without the exchange term. When one solution 
had been found, the exchange integrals were calculated and 
used for the next approximation, which could always be started 
as the solution without exchange sufficiently near the origin. 
The calculation was carried out by numerical integration. For 
the first integration—as for all the integrations of the ion­
eigenfunctions—Numerov’s method1 could be used since the

1 B. Numehov: Méthode nouvelle de hi détermination des orbites et le calcul 
des éphémérides en tenant compte des pertubations. Ch. II.
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Table I.

r P r • P 2ZP r P r • P

0.0 0.0000 0.000 2.000 10.0 0.0507 0.507
0.1 .1263 1.863 10.5 436 .458
0.2 .2291 1.730 11.0 374 .411
0.3 .3122 1.601 11.5 321 .369
0 4 .3790 1.481 12.0 276 .331
0.5 .4320 .216 1.365 12.5 237 .296
0.6 .4736 1.257 13.0 203 .264
0.7 .5057 1.157 13.5 175 .236
0 8 .5299 1.066 14.0 150 .210
0.9 .5475 0.980 14.5 129 .187
1.0 .5596 .560 0.902 15.0 110 .165
1.1 .5672 0.829 15.5 95 .147
1.2 .5711 0.763 16.0 81 .130
1.3 .5718 0.701 16.5 70 .116
1.4 .5700 0.645 17.0 60 .102
1.5 .5660 .849 0.592 17.5 52 91
1.6 .5604 0.547 18.0 44 79
1.7 .5533 0.502 18.5 38 70
1.8 .5452 0.462 19.0 33 63
1.9 .5361 0.427 19.5 28 55
2.0 .5263 1.053 0.392 20.0 24 48

20.5 21 43
21.0 18 38

2.0 0.5263 1.053 0.392 21.5 15 33
2.5 .4713 1.178 0.266 22.0 13 29
3.0 .4143 1.243 0.175 22.5 11 25
3.5 .3607 1.262 0.119 23.0 10 22
4.0 .3122 1.249 0.080 23.5 8 20
4.5 .2694 1.212 0.055 24.0 7 17
5.0 .2320 1.160 0.037 24.5 6 15
5.5 .1996 1.098 0.026 25.0 5 13
6.0 .1716 1.030 0.017 25.5 4 11
6.5 .1474 .958 0.012 26.0 4 10
7.0 .1266 .886 0.008 26.5 3 9
7.5 .1087 .815 0.005 27.0 3 8
8.0 934 .747 0.004 27.5 2 7
8.5 802 .682 0.002 28.0 2 6
9.0 688 .619 0.001 28.5 2 5
9.5 591 .561 29.0 2 4

10.0 507 .507 29.5 1 4
30.0 1 3
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Table II.

ratio of the second derivative of the eigenfunction to the func­
tion itself was here a function of r alone.

The normalised radial eigenfunctions of the neutral hydrogen
2 Z > 2_ 2 Yatom and the corresponding potential functions —— = -------- -
r r

are given in Table II for the states considered. The series ex- 
2 Z 2^1pansions of the ------functions near the origin are---- 2,------- ,

2 2 r r r 2
— — — for the 1-, 2- and 3-states respectively. For the S-states 
the first neglected term is of the second, for the P-states of the 
fourth order in r. In the case considered by Massey and Bates 
with the atom in the 1 S-state they found that the total dis­
tortion of the eigenfunctions due to electrostatic and exchange 
forces was negligible. This result was confirmed by the examin­
ation of one function (with E — —), the total phase difference 
for r—>oo between the exact solution and the field-free solution 
amounting to 6 degrees only. The phase effect of the exchange 
forces was in this case nearly three times the effect of the 
electrostatic forces and of the opposite sign. Then the field-free 
solutions were exclusively used for the calculation of the ab­
sorption coefficients in this case, so that the whole difference



K) Nr. 16

Table III.

found between them and Massey and Bates’ is due to our use

Energy
of the free electron <IE

0.04 1.96 1.58 ■ 10~17 cnr
0.09 2.82 2.28
0.1225 2.86 2.31
0.16 2.72 2.19
0.25 2.20 1.78
0.36 1.66 1.34
0.49 1.22 0.98
0.64 0.88 0.71
0.81 0.65 0.52
1.00 0.-17 0.38

of another eigenfunction for the ion.
The total absorption coefficient—being the sum of the coeffi­

cients belonging to the different allowed transitions—was calculated 
for the limiting frequency for the absorption edges. This frequency 
is 1.052 Rydberg units as the binding energy of the electron in 
the ion is taken to be 0.052 according to Hylleraas. This 
frequency is somewhat larger than the limiting frequency for 
the Lyman continuum and corresponds to a wave length of 

867 ff. The energy of the free electron is then — when the atom 

is in a 2-slate and < when it is in a 3-state. Further the trans-
9

ition probability was calculated for transitions to the 2-states 

only with energies of the free electron of and 1.

The eigenfunctions for the free electrons were calculated in 
higher approximations (2 or 3) in the two cases only, where 
the atom was in the 2 8- and the 2 P-stale and the energy of the

free electron was
1
4 '

In the other cases the transition probability

was so small, that a correction of it would have no interest.
For the eigenfunctions of smaller energies (near the absorption 
limits) the exchange terms could not in a first approximation 
be regarded as small and the described method of successive 
approximations would be of little use.
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Table IV.

Final state 
of the atom

[JpA(S)-Pfi-(S)dr]2
• PH(p) ■ rdrl

A = 867 Å A = 700 Å A = 506 Å

1 S
2S
3S

0.865
0.137
0.002

0.781
3.846
0.153

0.266 0.060

Final state 
of the atom 1 ^PA(s) • P8(p) ■ rdr\

[J ■ dr/

A = 867 Å A = 700 A A <= 506 Å

2P
3P

9.175
0.066

0.264
0.038

0.023 0.004

The absorption coefficients for the transitions directly to the 
ground-state are given in Table III as a function of the energy 
of the free electron. The integrated /’-sum is found to be 1.54 
while for Massey and Bates’ absorption coefficients it is found 
to be 1.50. The différence is unimportant, as the uncertainty 
due to the extrapolation of the —^-curves for the integration is 

dE
of the same order of magnitude. The good agreement between 
the two values seems to indicate, that the total absorption is

I/*

better determined than the shape of the ——-curve.aE
Table IV gives the squares of the product integrals

Pa(s) ' Pb Cs) ‘ dr and \ r ' 1 ’ Pb(?) dr
0 *’o

and Table V the resulting absorption coefficients.
The integrated /’-sum for the transitions to the 2-states is 

roughly about 0.6—0.7. The number of points on the curve is 
not quite sufficient to determine the run of the curve with cer­
tainty especially around its maximum near the Lyman limit. 
The probability for the transitions to the 3-states is seen to be
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Table V.

The table gives y.v as a function of wave length for different transitions.

Final state 
of the atom

7. = 86*7  Å 7. = 700 Å 7. = .506 4

1 S 0.38 • 10-17 cm2 _ _
2S 0.30 0.02 0.01
3 5 0.00 — —
2P 1.37 0.15 0.04
3P 0.00 — —

Sum: 2.0-

negligible, so that we have probably found the whole of the 
theoretically expected absorption. The total /'-sum is found to 
be 2.1—-2.2. The agreement with the theoretical value of 2.0 
has thus been considerably improved by taking the transitions 
covered by our calculations into account. The greatest part of 
the absorption due to transitions to the 2-states is seen to be­
long to the transition in which the final state of the atom is 
the 2 instate.
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